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1 Introduction

One of the principal roles of the ocean in the global heat balance is storage of heat,
which moderates seasonal extremes and leads to the contrast between ocean and continent
temperatures. In the global warming environment, the ocean could delay the onset of the
atmospheric warming by absorbing some of the excess heat trapped in the atmosphere.

Ocean modeling plays an important role in both understanding the current climatic
conditions and predicting the future climate change. In situ oceanographic instruments
provide only sparse measurements over the world ocean. Although remote-sensed data from
satellites cover the globe on the time scale of 2-10 days, it only provides information on the
ocean surface. Information below the ocean surface has b be obtained from 3-dimensional
ocean general circulation models (OGCMS).

OGCMS  are usually used in the following three types of applications: (1) eddy-
resolving integrations at ever increasing resolutions, (2) a large number of model sensitivity
experiments, and (3) long-period climate integrations over multiple decades or even
centuries. Due to the computational cost of running a 3-dimensional OGCM, these
applications are far from having been exhaustively run.

The existing OGCMS do not properly resolve synoptic disturbances (or weather)
commonly known as meso-scale  eddies in the ocean. Much of the ocean energy is
concentrated at a small physical length scale known as the radius of deformation, which
varies from about 1 degree (on the order of 100 km) near the equator to V1O or even U20 degree
at high latitudes. This is the scale of intense boundary currents as well as transient eddies,
and these phenomena are of considerable importance to the larger scale dynamics. It was not
until recent years that eddy-permitting (or eddy-resolving) calculations could be carried out
on a basin or global scale. Using the vector supercomputers (e.g., Cray Y-MP)  at National
Center for Atmospheric Research (NCAR), decade-long ocean model integrations have been
carried out at 1./4 degree horizontal resolution [11, which was the first OGCM with performance
exceeding 1 billion floating-point-operation-per-second (1 GFLOP/s).  With the advance of
massively parallel computing technology, decade-long integrations at l/6 degree resolution
have been conducted at Los Alamos  National Laboratory (LANL) [21 and Jet propulsion
Laboratory (JPL) [31 on the CM-5 and Cray T3D, respectively. Recently, a short two-year
integration at l/12 degree resolution was made on the T3D at the Pittsburgh Supercomputer
Center [41. Despite the recent progress in eddy-resolving ocean modeling, it is not clear
whether l/6 or even l/12 degree resolution is suficient to resolve the ocean eddies and their
impact on the large-scale circulation.

In additional to running OGCMS at ever increasing resolutions, OGCMS also need to
be thoroughly tested against the available observations to establish their validity in describing
the real world. This often involves conducting a large number of experiments with different
model configurations, and seeking the “best fit” between the model and data. Because of the
limited computing resources available to ocean modeling community, it is often a very
challenging task to systematically test various combinations of different model parameters.
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When studying the Earth’s climate, OGCMS have to ke integrated over long-period of
time, on the order of 100s or even 1000s of years. This is mainly because of the long memory of
the ocean system, which has a large impact on the other components of the Earth system, e.g.,
atmosphere, land and ice.

Given the limited computing resources available to the ocean modeling community, it
is therefore very important to develop an effkient community ocean model, which can be used
to conduct the above described applications. It is precisely this objective that motivates the
present study. Our goal is to select a commonly used OGCM and improve its computational
performance, particularly on advanced parallel computers.

2 Model description

Based upon the above described objective, we chose the most widely used OGCM code as
our base code. The OGCM is based on tie Parallel  Ocean Program (POP) developed at LOS
Alamos  National Laboratory [21. This ocean model evolved from the Bryan-Cox 3-
dimensional primitive equations ocean model [5,61, developed at NOAA Geophysical Fluid
Dynamics Laboratory (GFDL), and later known as the Semtner and Chervin model or the
Modular Ocean Model (MOM) [7]. Currently, there are hundreds of users within the so-called
Bryan-Cox ocean model family, making it the dominant OGCM code in the climate research
community.

The OGCM solves the 3-dimensional primitive equations with the finite difference
technique. The equations are separated into barotropic (the vertical mean) and baroclinic
(departures from the vertical mean) components. The baroclinic  component is 3-dimensional,
and uses explicit leapfrog time stepping. It parallelizes  very well on massively parallel
computers. The barotropic component is 2-dimensional, and solved implicitly. It differs from
the original Bryan-Cox formulation in that it removes the rigid-lid approximation and treats
the sea surface height as a prognostic variable (i.e., free-surface). The free-surface model is
superior tn the rigid-lid model because it provides more accurate solution to the governing
equations. More importantly, the free-surface model tremendously reduces the global
communication otherwise required by the rigid-lid model. Building upon the original ocean
model developed at LANL, the new JPL ocean model has significantly optimized the original
code, and developed a user-friendly coupling interface with the atmospheric or biogeochemical
models.

3 General optimization strategies

The original POP code was developed in FORTRAN 90 on the Los Alamos CM-2
Connection Machine [2]. During the first half of 1994, the code was ported to the T3D by Cray
Research using SHMEM-based message passing. Since the code on the T3D was still time-
consuming when large problems were encountered, improving the code performance was
required. In order to significantly reduce wall clock time, the code was optimized using single
PE optimization techniques [8] and other strategies. The remainder of this section discusses
these strategies and the corresponding improvement in performance of the POP code on the
T3D.

3.1 Memory Optimization and Arithmetic Pipelines

The T3D uses the DEC Alpha EV4 processor with a 151 MHz clock and is capable of 151
MFLOP/s of peak performance. The cache is 8 KB, direct mapped, and has 32 byte cache lines.
There are several ways to achieve good performance on the T3D. One is through effective use
of cache; another is through effective use of pipelined arithmetic.
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The POP code uses many two dimensional arrays, which can be inefficient when
frequent stride-one addressing is encountered. One improvement is to change to explicit one
dimensional addressing. For example, the two dimensional array KMU ( lMT,  JMT) can be
replaced by KMU ( IMT* JMT ). This type of change can increase performance, both by
simplifying index calculations and by making the code easier for the compiler to optimize.

Another useful strategy is to unroll loop statements. The DEC EV4 processor has
segmented functional units for floating point multiply and addition. Although a multiply or
addition can be issued every clock period, the result is not ready for 6 clock periods. (The
divide operation needs 61 clock periods as it is not a pipelined function.) Thus, in order to get
top performance from FORTRAN code, the user must expose functional unit parallelism b the
compiler. Because of these features of the T3D system, the POP code has been optimized by
unrolling loop statements if this will expose functional unit parallelism. The number of
divide operations also has been minimized by using real variables to store the values resulting
from divide operation and moving the divide operation out of loop statements when it is
independent of the loop index. After these techniques were applied, the code performed with a
significant increase of the total MFLOP/s,  as discussed in section 4.

3.2 Eliminating  IF and WHERE statements by using mask arrays

In the original POP code, many logical IF and WHERE statements were used in
distinguishing ocean points from land points. These statements consumed substantial CPU
time and reduced pipelining of operations inside loops. The compiler often was not able to
efficiently optimize these loops (especially using automatic loop unrolling), since within the
IF and WHERE statements some of the computations were quite complex. These IF and WHERE
statements were replaced with landlocean  masking arrays, which store the values 1 for ocean
points and O for land points, and then use multiplies of these values.

3.3 Using  O@illliZSd  libraries

There are several optimized libraries are available on the T3D, such as the SHMEM
and BLAS libraries. These libraries have been already optimized to give the best possible T3D
performance if the user applies them properly. In the POP code, there are some global sums i n
the conjugate-gradient routine and in the energy diagnostics routine. Those sums can be
performed by using SHMEM library rather using PVM calls. This substitution gives a better
performance. There are also many matrices and vectors computations in the POP code which
consume a fair portion of the total CPU time. We have replaced them by calling BLAS routines.
This can improve performance by a factor of 5 to 10.

3.4 Equation of state example

As an example, the routine which computes the equation of state for ocean water was
optimized by eliminating the IF/WHERE statements, replacing the FORTRAN 90 array syntax
with explicit loop structures, converting nested double-loops and triple-loops to single-loops,
and performing explicit loop unrolling. Some mathematical formulae were also applied to
eliminate some unneeded work. The overall  performance improvement in this routine was
450%.

3.5 Portability

Given the short life cycle of the massively parallel computer, usually on the order of
three to five years, we want to emphasize the portability of the ocean model and the associated
optimization routines across several computing platforms. Thus far, the JPL ocean modeling
effort has mainly been conducted on the T3D. We are now in the process of converting the
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ocean model from T3D to the T3E. We have also started porting the ocean model to the newly
available Hewlett Packard (HP)/Convex  SPP-2000, using an MPI version of the POP code.
Preliminary results (Table 2) show that our ocean model running on the SPP-2000 is about 3 to
4 times faster than on the T3D. Aa the memory of the SPP-2000 is 4 times larger than that of the
T3D, this implies one could also run a problem 4 times larger on the SPP-2000 in the same
amount of time.

4 Results and discussion

Aa discussed in the section above, the POP code was ported to the T3D in 1994. The code
had previously been rewritten as a message passing code (PVM),  and this is the version that
was initially ported to the T3D. Those porting this T3D version did not optimize the code
beyond trying to choose the fastest code to do identical work as had been done in the previous
version. As discussed in the section above, new algorithms and methods to do similar work at
a faster rate have now been implemented. The remainder of this section discusses the overall
results of this work, and compares them with the initial T3D version of POP.

A test problem was chosen with a local grid size of 37 x 34 x 60 cells. Timings were run
for machine sizes from 1 to 256 processors, corresponding to a global grid of up to 592 x 544 x 60.
The POP code decompose the grid in blocks in both x and y, and all z data for a given (x,y)  is
local to one processor. All results shown in this section refer to scaled size problems, where the
problem size per processor is fixed and the number of processors is varied.

4.1 Scaling Performance

Table 3 shows the run time (in wall clock time) per time step vs. the number of
processors, for both the original code and the optimized code. The code running on one
processor has been improved by 43%, and as the number of processors involved in the
calculation increases, so does the improvement due to the optimization, up to 59% on 256
processors.

4.2 w-w

It is clear from Table 3 that the code’s scaling has also been improved. This
improvement is enumerated in the Table 4, showing the speed-up achieved versus the number
of processors used in the calculation. For the ideal parallel code, these two numbers would be
equal. The optimized code is performing quite well, in running 250 times faster than the
single processor code on 256 processors. The original code, however, clearly had scaling
problems, as its speed-upon 256 processors is only 182 times.

4.3 Flop Rate

Table 5 shows the actual performance achieved in terms of computation rate. Aa mentioned
above, the T3D processor has a clock period of 6,6 nanoseconds, corresponding to a clock rate of
151.5 MHz. Since the processor can complete one floating point results per clock period, this is
equivalent to a maximum floating point performance of 151,5 MFLOP/s.  For 256 processors,
this maximum performance is 38,8 GFLOP/s.

It can be observed that the new code is attaining only 10% of the maximum possible
performance of the various machine sizes examined. There are three reasons why the code
performs at this level. One reason is the ratio of computation to communication in these
examples. If a larger local grid size was used, this ratio would increase and the overall
performance would also increase. Another reason is poor cache reuse, due to the formulation
of the code. It is written in terms of vector-vector routines (replaced by BLAS 1 [91 routines),
rather than matrix-vector or matrix-matrix routines (which could be replaced by BLAS 2 [10] or
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BLAS 3 [I 11 routines) and uses finite difference routines. Neither of these make enough we of
the data (each time it is loaded from memory) to achieve very high performance. (Note that
while the data structures being used in the finite-difference routines could be changed to
achieve better performance than is now being obtained, this still would be a small fraction of
peak performance. ) The final reason is that a fairly large number of non-floating point
operations are being performed, including a number of integer operations that is on the order
of the number of floating point operations.

It may also be seen that from Tables 3 and 5 that the number of floating point
calculations being performed is approximately 13% larger for the optimized code that the
original code. This is due to the replacement of I F /WHERE statements with floating point work,
as discussed in section 3.2. The amount of work being done in the code is the same, but some
comparison and branch instructions have been replaced by floating point instructions. This is
a good example of why floating point performance is a relatively poor method for calculation
performance, but as it is considered an important parameter for comparison of unrelated
codes, it is included in this paper.

4.4 Overall Simulation Results

The test problem size used in the results given above corresponds to either a 113° global
ocean model with 60 depth layers on 512 processors, or a 113° global model with 30 depth layers
on 256 processors. Using the latter model, using the CPU time given as 2.4 sechime step, and
simulating the circulation of the global ocean for 100 years (or 2.63 million time steps, with
each time step being 20 minutes,) wotid  required ~most  1800 CPU hours> Or about 75 CPU daYs
on the 256 processor T3D. It is possible for this project to use 1.4 CPU days per week of the T3D
located at the Jet Propulsion Laboratory, so this large run would take about 53 weeks to
complete. This may ke contrasted with a similar simulation using the original code, which
would take 181 CPU days, or 130 weeks. For large problems such as this, a run which takes 1
year is possible, but 2.5 years is not. On the HP SPP-2000 which has recently been installed at
JPL, the run times is forecast to be about 3 months (once all 256 processors are installed.) The
T3E installed at NASA Goddard Space Flight Center should be able to run this problem on 384
processors using about 12 CPU days, though it is currently unclear how much time this would
take, since this project doesn’t have as much access to that machine.

The test problem may also be used to calculate run times for smaller problems, such as
a model of the North Atlantic ocean. A model with 1/6° resolution, corresponding to a grid size
of 640 x 624 x 45 on 256 processors could be run using approximately the same time. Running
this model to simulate 1 year (at M minutesltime  steP) wo~d req~re 36 CPU ho~s. This can
be run on the JPL T3D in just over one week. A series of runs can be done to examine how
changes in initial conditions will effect the simulation. A simulation of this size may also be
compared with measured data, through a repeated process involving variation of physical
parameters, to determine correct values for these parameters. The original code would take
about 2 1/2 weeks, making these types of analysis much more difficult to perfom.  Again, on
the 256 processor SPP-2000, three to four runs of this size could be done per week, with the
optimized code. And on the 384 processor T3E, each run would take about 6 CPU hours.

This l/6 degree resolution North Atlantic Ocean model has been run for 30 years of
simulated time on the 256-processor T3D, forced with the climatological  monthly air-sea
fluxes. In comparison with the previous eddy-resolving ocean model simulations [1,2,12,131,
this model shows improved Gulf Stream separation off the coast of Cape Hatteras [31. As the
horizontal resolution increases, increasingly fine scale features and the intensification of the
currents are found with many of the larger scale features unchanged. It is quite promising
that the physical processes responsible for both water mass and eddy formation can be
reasonably simulated in models of this class.
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5 Conclusions

Optimization methods which were used on the POP code included unrolling loops, both
manually and through the compiler, rewriting code to equivalence multi-dimensional arrays
as one-dimensional arrays, simplification of algebra, reductions in the number of divide
operations, use of mask arrays to trade fast floating point work for slow comparisons and
branches, explicitly rewriting statements in array notation as loops, and using optimized
libraries. All of these contributed to the large decrease in time required to solve ocean
modeling problems.

We now anticipate being able to conduct follow-up eddy-resolving integrations at much
higher resolutions. The l/10 and l/12 degree North Atlantic Ocean calculations have been
carried out on the 512-processor CM-5 at LANL and 512-processor T3D at the MSC, respective y.
It is quite feasible that JPL can construct a V16 degree calculations on the upcoming 334-
processor T3E at Goddard Space Flight Center (GSFC) and 256-processor SPP-2000 at JPL. In
additional to the OGCM integrations, we are coupling this OGCM with the atmospheric general
circulation models developed at UCLA [14,151 on the T3D/E. A biogeochemical  component
within the OGCM is also being developed, so that the carbon cycle associated with the
increasing COZ and global warming can be addressed.
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7 Tables

Platform/ sustained speed Grid Size (degree CPU time
Number of CPUs (GFLOP/S) x degree x level) (houdsimulat.ed  year)

Cray l-YKM32 15 lf4xlf4 x40 10
TMC CM-5/1024 10 l16xlf6x40 3
Cray T3W1024 30 l/8xl/8x40 %

Table 1. Run time estimates of global OGCMS on various advanced computers.

Number of CPUs SPP-2000 T3D
(grid size per CPU) (grid size per CPU)

16 1.09 (64 X32X 20) 3.20 (64 X32X 20)
64 3.19 (128 x64x 20) 3.34 (64 X32X 20)
256 3.73 (64 X32X 20)

Table 2. Wall Clock Time (see) per ~me Step  for T3D, 5PP-2000 (MPI codes).

PlwcesolY3 1 8 64 128 m
Original Code 4.116 4.301 4.728 5.065 5.788

New Code 2.335 2.359 2.370 2.386 2.390

Table 3. Wall Clock Time (see) per Time Step for Scaled Problems.

Plwessom 1 8 04 128 %6
Original Code 1.00 7.66 55.7 104 182

New Code 1.00 7.92 63.1 125 250

Table 4. Speed-Up (vs. Single Processor Time) for Scaled Problems.

PmceSsOrs 1 8 64 m !2M
Original Code 7.1 54.4 395 738 1290

New Code 14.2 112 890 1780 3630

Table 5. Total Floating Point Performance Rates (MFLOP/s)  for Scaled Problems.
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